PRESAGE® as a new calibration method for high intensity focused ultrasound therapy

نویسندگان

  • M Costa
  • C McErlean
  • J Adamovics
  • S J Doran
چکیده

High Intensity Focused ultrasound (HIFU) is a non-invasive cancer therapy that makes use of the mainly thermal effects of ultrasound to destroy tissue. In order to achieve reliable treatment planning, it is necessary to characterise the ultrasound source (transducer) and to understand how the wave propagates in tissue and the energy deposition in the focal region. This novel exploratory study investigated how HIFU affects PRESAGE®, an optical phantom used for radiotherapy dosimetry, which is potentially a rapid method of calibrating the transducer. Samples, of two different formulations, were exposed to focused ultrasound and imaged using Optical Computed Tomography. First results showed that, PRESAGE® changes colour on ultrasound exposure (darker green regions were observed) with the alterations being related to the acoustic power and sample composition. Future work will involve quantification of these alterations and understanding how to relate them to the mechanisms of action of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infrared mapping of ultrasound fields generated by medical transducers: feasibility of determining absolute intensity levels.

Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goa...

متن کامل

FRI 7 In-vitro evaluation of thermal dose accuracy for high intensity focused ultrasound hyperthermia therapy: MRgFUS experience

High intensity focused ultrasound (HIFU) has performed its non-invasive heating capability for tumour treatment. Magnetic resonance image (MRI) guided HIFU surgery has been initially proved for uterine fibroid. ExAblate MRgFUS system (Insightec, Israel) recently demonstrated hyperthermia application for malignant bone metastasis palliation and been certificated by US FDA. HIFU beam projects ult...

متن کامل

Numerical Study for Optimizing Parameters of High-Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator

Introduction High intensity focused ultrasound (HIFU) is considered a noninvasive and effective technique for tumor ablation. Frequency and acoustic power are the most effective parameters for temperature distribution and the extent of tissue damage. The aim of this study was to optimize the operating transducer parameters such as frequency and input power in order to acquire suitable temperatu...

متن کامل

Relationship between temperature and T2 in subcutaneous fat and bone marrow at 3T

Background/introduction MR-guided high-intensity focused ultrasound (HIFU) for treatment of uterine fibroids and painful bone metastases uses the proton resonant frequency shift (PRF) for temperature monitoring in water-based tissues. However, PRF fails to detect temperature changes in tissues with high lipid content, such as fat and bone marrow. Previous studies have shown a change in T2 of su...

متن کامل

High-Intensity Focused Ultrasound Therapy - an Overview and principles about a new weapon in cancer therapy

High-intensity focused ultrasound therapy is a novel, emerging, therapeutic modality that uses ultrasound waves, propagated through tissue media, as carriers of energy. This completely non-invasive technology has great potential for tumor ablation as well as hemostasis, thrombolysis and targeted drug/gene delivery. However, the application of this technology still has many drawbacks. It is expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014